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Abstract. We present a discussion of the occurrence of supercritical effects induced by an 
attractive S potential. A detailed analysis of the one-dimensional Dirac equation in the 
presence of such a potential shows that the ground state never dives into the Dirac sea 
and therefore the supercritical effects are absent. In the three-dimensional spherically 
symmetric 8-potential case, in contrast, we find supercritical effects. This situation rep- 
resents an interesting problem in relativistic quantum mechanics because the S potential 
induces discontinuities in the wavefunction, in contrast to the well known Schrodinger 
case where only the first derivative of the wavefunction becomes discontinuous. 

1. Introduction 

The aim of this paper is to explore the possibility of inducing supercritical effects by 
perturbing the Dirac sea with an attractive S potential. As is well known [l], it is 
possible to have positron emission induced by the presence of a very strong attractive 
external potential which dives into the sea of negative-energy electrons. 

This situation occurs when the energy associated with an unoccupied bound state 
of the potential becomes degenerate with a level of the sea. Since the sea consists of 
a continuum of negative-energy states, an electron belonging to it can be trapped in 
the potential, leaving a hole with positive energy in the sea, i.e. a positron which 
escapes up to infinity. This phenomenon, where the appearance of the positron implies 
a charged vacuum, is called a supercritical effect. The external fields which are 
responsible for a potential with ‘dived’ bound states are called supercritical fields. In 
fact, the external potential must be very strong in order to produce bound states with 
an energy greater, in absolute value, than 2 m,c2= 1 MeV. This should be compared, 
for example, with the 13.6 eV of the ground-state energy of the hydrogen atom. 

This idea of supercritical effects seems to play, however, a crucial role in the 
description of recent exciting heavy-ion scattering experiments [ 2 ] ,  where two heavy 
nuclei, slowly touching each other, produce e-et pairs with a multiple peak energy 
spectrum. Although this phenomenon has not been completely explained by theory 
[3], we do know that when the two nuclei are close enough, a supercritical Coulomb 
potential, with a dived ground state, will be induced for a sufficiently high value of 
2, + 2, (3 173), producing the outgoing positron according to our previous discussion. 
The mechanism which, in a second stage, is responsible for the outgoing electron is 
not completely understood. However, some models, like the one by Scharf and 
Twerenbold [3], claim to reproduce the basic structure of the spectrum. Recently it 
has been speculated that a new phase of QED, with a soliton-like structure, is produced 
when supercritical effects take place [4]. 
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With these considerations in mind, we have investigated the situation where the 
Dirac sea is perturbed by the most simple localised potential, a 6 potential. Note that 
the 6 potential, constructed as a limit of regular attractive potentials, is ‘infinitely’ 
profound and dives into the depths of the Dirac sea. In principle we could expect 
supercritical effects, and this will be, in fact, the case in the three-dimensional problem. 
This is not true, however, for the one-dimensional situation. 

Although this scenario might be considered as an academic problem, a kind of 
‘gedanken’ experiment, the 6 potential constitutes, however, an interesting problem 
in relativistic quantum mechanics. As far as we know this problem has not been 
discussed in the literature, as is the case in Schrodinger theory. 

Since the Dirac equation is a first-order differential equation in the spacetime 
variables, a singular 6 potential will induce discontinuities in the wavefunction itself, 
i.e. in the components of the Dirac spinor. Note that in the Schrodinger version of 
the &potential problem [ 5 ]  there are discontinuities in the first derivative of the 
wavefunction, because the stationary Schrodinger wave equation is a second-order 
differential equation. 

This paper is organised as follows. In section 2 we analyse the one-dimensional 
case, showing the absence of supercritical effects for a 6 potential with the support at 
the origin. Section 3 is devoted to the study of the three-dimensional spherically 
symmetrical 6 potential. We show that, in this case, the ground state actually dives 
into the Dirac sea, for a certain value of the 6 coefficient, and therefore we will have 
supercritical effects. Finally, in section 4, we summarise our conclusions. 

2. The one-dimensional case 

In this section we will consider a relativistic electron restricted to move in one space 
dimension in the presence of the attractive 6 potential, V(z) = -aS(z), where a is a 
real positive coefficient. This is the most simple case in order to analyse the discontinuity 
of the wavefunction induced by such a singular potential. The corresponding Dirac 
equation is given by 

(a,p,c + pmc2)?( z )  = ( E  - V( z))?( z) (1) 

V(z)  = -aS(z). (2) 

with 

Note that translation invariance allows us to take the support of the 6 at the origin 
without loss of generality. This is the potential normally used in the literature [5] by 
discussing the corresponding one-dimensional Schrodinger case. 

We decompose the Dirac 4-spinor into upper and lower 2-spinor components +bu(z) 
and $,( z), respectively: 

and integrate (1) in the range - E  s z S + E  for a small E > 0. 
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We have used the usual convention of Bjorken and Drell [ 6 ]  for the Dirac matrices 
a, in terms of the Pauli matrices and for the decomposition of the Dirac spinor. 

If we take the limit E += 0 in the previous equations we get 

-ificuz(+i+(O) - +;(o)) = a + u ( O )  

-ificaz(+:(O) - + i ( O ) )  = a+dO). 

( 5 a )  

( 5 b )  

In these expressions + + ( O )  and + - ( O ) ,  denote the result of taking the limit E + O  
from the right and the left, respectively. Note that we have generated a discontinuity 
in the upper and lower components at z = O  in such a way that the discontinuity of 
one component is given by the value of the other component at this point. The problem 
now lies in finding the value of each component at the support of the S. In order to 
answer this question we consider the bound-state solution, i.e. ] E l  < m, of (1) in the 
regions given by z < 0 and z > 0, where the potential vanishes. As in the non-relativistic 
discussion of the S potential [ 5 ] ,  we will have an exponential decaying wavefunction 
for a bound state, although the potential vanishes everywhere with the exception of 
the S support. The corresponding Dirac spinors, as is well known, are given by the 
following. 

Region I ,  z ( 0  

1 
0 

ik / (E  + m )  I 0 

q ( z )  = A  

Region II ,  z >  0 

*+(Z)  = c 
1 
0 

ik / (E  + m )  
0 

1 

exp( kz) + D 

1 
0 

- ik/(E + m) 
0 

exp( - kz). (7)  

We use for the moment the unit system h = c = 1. In this expression k is given by 

(8) k =(m*- 

We must have B = C = 0 in the previous equations in order to have a normalised state. 
Note that it is sufficient to look for one particular electron solution of the Dirac 
equation, with a definite spin polarisation, since the potential is spin independent. 

The value of the wavefunction at z = 0 can be found once we have a relation 
between the coefficients A and D. As will be shown, parity provides us with the 
required relation. Parity is a good quantum number for our problem since the parity 
operator commutes with the Hamiltonian. As is well known [ 6 ] ,  the parity operator 
I7 acts on the eigenstates of the Hamiltonian in the following way: 

(9a)  

If we take the upper and lower components explicitly, the previous relation implies 

rI+(X, t )  = y"(-X, t )  = * + ( X ,  t ) .  
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We conclude that one of the components must be even and the other odd. This 
means that 

A=*D.  (9c) 
The plus sign denotes a Dirac spinor where the upper component is even and the 

lower component odd. The minus sign corresponds to the opposite situation. The 
insertion of the explicit expressions for 4: and i+h:(O) in ( s a )  and (5b) gives us the 
energy of the bound state for each case. In the ‘normal’ unit system ( h  # 1, c # 1) we 
have 

(4h2c2 - a 2 )  
(4h2cZ+ a’) 

E = mc2 i f A = D  

(4h2c2 - a 2 )  
(4h2c2+  a 2 )  

E = -mcz if A = -D. 

The existence of two energy eigenvalues in the interval [m, -m] is consistent with 
general properties of the Dirac operator [7]. In figure 1 we show the function E ( a ) .  
Although from the mathematical point of view both solutions are valid, from these 
curves we may conclude that the first choice for the sign is the correct one because 
the energy of the bound state becomes more negative for an increasing value of the 
coefficient U, as it should be from an intuitive point of view. From ( loa )  we can see 
that our bound state will never dive into the Dirac sea. If a +CO the ground state goes 
up to E = -mc2, only touching the border of the sea. Therefore, we will not have 
supercritical effects in this case. 

Note that the upper component of the Dirac spinor is continuous at z = 0 if A = D. 
All the discontinuity induced by the 8 potential concentrates in the lower component 
and its value at z = 0 is given by the average of +T(O) .  

a 

Figure 1. This figure shows the energy of the bound state, in units of m, for the one- 
dimensional problem, as a function of the S coefficient a. The full curve corresponds to 
A = D and the broken curve to A = -D. 

3. The three-dimensional Dirac potential 

In this section we want to discuss the case of a central spherically symmetric attractive 
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S potential. This potential, of course, depends only on the radial coordinate 

V ( r ) = - a a ( r - r , ) .  ( 1 1 )  

It is convenient at this point to recall some general properties of the solution of 
the Dirac equation in a central potential. For more details the reader may consult the 
book by Greiner et a1 quoted in [ l ] .  In  this case, the complete set of commuting 
operators is given by H, J 2 ,  J3 and K, where the last one is defined by 

K =P(Z * L +  h ) .  ( 1 2 )  

In this expression Z denotes the usual spin operator in the Dirac theory and L is 
the angular momentum operator. The eigenvalues of the operator K are given by 

K W = - ~ h Y = k f ( j + ; ) h Y .  ( 1 3 )  

J2Y = j (  j + 1 )  h Z Y .  

In ( 1 8 )  j = 0, i, 1 ,  i, etc, are the eigenvalues of J 2  according to the usual relation: 

( 1 4 )  

We note that the four-component Dirac spinor is not an eigenvalue of L2.  However 

L'+, (x)  = [ j ( j +  1 ) h 2 +  ~ h ~ + $ f i ~ ] + , , ( x )  = l U ( 1 , +  1 ) h 2 + , ( x )  ( 1 5 a )  

L'+ , (x)  = [ j ( j + 1 ) h 2 - ~ h 2 + t h 2 ] + , ( x ) ~  1 , ( 1 , + 1 ) h 2 ~ , ( x ) .  ( 1 5 b )  

the upper and lower components, taken separately, satisfy 

Note that the orbital parities of the upper and lower components have opposite 
sign. It is convenient to parametrise the four-component spinor by separating the 
radial and angular dependence, as follows: 

For our present discussion we do not need the explicit form of the angular 
components. If we now consider the Dirac equation for a spinor parametrised in this 
way, it is not difficult to show that the radial components satisfy the following set of 
coupled differential equations: 

F ( r )  and G ( r )  are defined as follows: 

G (  r )  = rg( r )  

F (  r )  rf( r ) .  

Let us consider ( 1 7 a )  and ( 1 7 6 )  for our attractive &shell potential. If we integrate 
the differential equations between r, - E and r,+ E taking then the limit E + 0 we find 

h c [ F ' ( r o ) - F ( r o ) ] =  - a G ( r , )  ( 1 %  1 
h c [ G ' ( r , ) -  G - ( r o ) ] =  a F ( r , ) .  ( 1 9 6 )  
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This result is independent of the measure used in the integral, at least for singularity- 
free weight functions. The previous equations show the appearance of discontinuities 
in the radial components of the wavefunctions. In this case, however, it is clear that 
parity will not help us to solve the problem, i.e. to fix the value of the upper and lower 
components a.t the support of the potential, since this operator does not connect the 
inside solution ( r  < ro) with the outside solution ( r  > ro) .  

In recent work by Dittrich et a1 [ 7 ]  we can find a thorough discussion of the 
mathematical properties of Dirac operators with a spherically symmetric &shell interac- 
tion, i.e. precisely our case. The boundary conditions which must be satisfied by the 
inside and outside solutions at the 6 support are established in theorem 3.2 of [ 7 ] .  
Let us take again the discontinuity equations ( 1 9 a )  and ( 1 9 b )  and assume that the 
vPlues of the G( r )  and F (  r )  at ro are given by a convex combination with an arbitrary 
parameter a, 0 s a s 1 ,  of the form 

G ( r o )  = a G + ( r O ) + ( l ’ - a ) G - ( r o )  (20a 1 
F (  ro) = aF+(  ro) + ( I  - a ) F - (  ro) .  ( 2 0 b )  

If we take for the moment ( a l h c )  = 1 ,  ( 1 9 a )  and ( 1 9 b )  can be written as 

1 1  

The quoted theorem establishes that, in order to have a self-adjoint Dirac Hamil- 
tonian, the matrix A which relates the inside and outside solutions must be real and 
det A = 1 .  If we impose the last condition we get as the only real solution a = f, i.e. 
the same answer we found in the one-dimensional case through the parity analysis. 
Of course, we could have used in this case the same theorem, since ( 5 )  and ( 1 9 )  have 
the same shape. 

The regular solutions in the two regions where the potential vanishes, r < ro and 
r > ro ,  corresponding to bound states, i.e. states with 1 E I < m, are given by the following 
radial components. 

Region I. r <ro 

Region I I ,  r > r ,  

In these expressions [ ~ / 2 x ] - ” ~ I ~ + ~ / ~ ( x )  and [ ~ / 2 x ] - ” ’ K , + ~ ~ ~ ( x )  are the modified 
spherical Bessel functions [ 8 ] .  In terms of K, see ( 1 3 ) ,  we have defined 

1, = K i f K > O  

1, = - K - 1  i f K < O  
( 2 4 a )  
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In the case of the ground state, corresponding to an upper component spinor with 
1, =0, (22) and (23) reduce to 

and 

If we substitute the averages of the radial functions at ro in the radial discontinuity 
equations, and eliminate the coefficients a ,  and a 2 ,  we get a general expression for 
the energy eigenvalue equation. In the case of the ground state it assumes the form 
( h  = c = 1) 

(27) 

If we solve this equation numerically for ro= 1 m-I ,  we find that the ground state 
disappears into the sea for U, = 3.7 inducing positron emission for all values of a larger 
than a , .  From the mathematical point of view (see theorem 6.2 of [7]) at this point 
the corresponding wavefunctions are no longer square integrable. Beyond [ -m,  m ]  
we probably have resonances. 

In figure 2 we show the dependence of the ground-state energy on the parameter 
a for r o =  1 m - ’ ,  0.5 m - ’ .  Note that a smaller value of ro implies a more abrupt 

a k r o ( k r o + 1 ) - k r ~ ( E + m ) ( a a 2 - 1 )  
a ( E + m ) ’ r ~ + a ( k r , + l ) + k r ~ ( E + m ) ( a u ’ - l ) ‘  

tanh( kro) = 

0 

Figure 2. In this figure we represent the behaviour of the ground-state energy, in units of 
m, for the three-dimensional case, as a function of the 8 coefficient a. The full curve 
corresponds to r o =  1 m - ’  ( f i  = c = 1) and the broken curve to ro = O S  m - ’ .  
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behaviour of the ground-state energy as a function of a. If ro diminishes, a larger 
value of a is required to induce a bound state. However, once this bound state appears, 
it goes down more rapidly, as a function of a, to E = -mc2 and dives into the sea. 
For example a ,  = 2.77 for ro = 0.5. If ro becomes very small, what we really have is an 
unstable behaviour. The coefficient a needs to be large, but then the ground state 
dives into the sea extremely rapidly. In any case it is well known that a delta potential 
concentrated at one point in the three-dimensional case is completely trivial and does 
not affect the wavefunction at all [9]. 

To conclude this section we would like to make a remark concerning the non- 
relativistic behaviour of our solution. The structure of the spinor radial components 
F ( r )  and G(r) ,  (25) and (26), tells us that the lower F ( r )  component is supressed by 
an order l / c  with respect to the upper component G( r ) .  In the non-relativistic limit, 
where c + m ,  the upper component becomes continuous and we have the usual 
Schrodinger solution to the &potential problem [ 51. 

4. Conclusions 

In this paper we have considered a curious situation in relativistic quantum mechanics, 
namely the discontinuities induced by a 8 potential on the wavefunction and its possible 
physical consequences. 

Supercritical effects will be absent in the one-dimensional situation with the 8 
potential concentrated at the origin. In the three-dimensional case, in contrast, the 
ground state dives into the Dirac sea for some critical value of the coefficient in front 
of the 6 potential, inducing positron emission. From our analysis it is clear that these 
supercritical effects depend on the spatial extension of the potential. In fact, if the 
radius of the 8-shell potential becomes smaller it is more difficult to induce the existence 
of bound states, but they descend more quickly, as a function of the 6 coefficient, into 
the depths of the sea. 
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